Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
J Biomol Struct Dyn ; : 1-11, 2021 Nov 09.
Article in English | MEDLINE | ID: covidwho-2285757

ABSTRACT

As the coronavirus disease 19 (COVID-19) pandemic continues to pose a health and economic crisis worldwide, the quest for drugs and/or vaccines against the virus continues. The human transmembrane protease serine 2 (TMPRSS2) has attracted attention as a target for drug discovery, as inhibition of its catalytic reaction would result in the inactivation of the proteolytic cleavage of the SARS-CoV-2 S protein. As a result, the inactivation prevents viral cell entry to the host's cell. In this work, we screened and identified two potent molecules that interact and inhibit the catalytic reaction by using computational approaches. Two docking screening experiments were performed utilizing the crystal structure and holo ensemble structure obtained from molecular dynamics in bound form. There is enhancement and sensitivity of docking results to the holo ensemble as compared to the crystal structure. Compound 1 demonstrated a similar inhibition value to nafamostat by interacting with catalytic triad residues His296 and Ser441, thereby disrupting the already established hydrogen bond interaction. The stability of the ligand-TMPRSS2 complexes was studied by molecular dynamics simulation, and the binding energy was re-scored by using molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy. The obtained compounds may serve as an initial point toward the discovery of potent TMPRSS2 inhibitors upon further in vivo validation.Communicated by Ramaswamy H. Sarma.

2.
Heliyon ; 8(11): e11689, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2130935

ABSTRACT

The coronavirus disease 2019 (COVID-19) outbreak has created endless social, economic, and political fear in the global human population. Measures employed include frequent washing hands and using alcohol-based hand sanitisers and hand rubs as instant hand hygiene products. Due to the need to mitigate the pandermic, there is an increase in the local production of alcohol-based hand sanitisers, whose quality and efficacy against germs and the virus are questionable. Therefore, the current study investigated the in-vitro antimicrobial efficacy of on-market alcohol-based handwashing sanitizers used to mitigate the Covid-19 global outbreak toward combating enveloped bacteria such as E. Coli, P. aeroginosa, S. aureus, and a fungus C. albicans. The antimicrobial effectiveness of alcohol-based hand sanitizer was performed by the agar well diffusion method, and the analysis of variance (ANOVA) model was used for statistical analysis. Results indicate that alcohol hand-based sanitizers were more effective in inhibiting P. aeroginosa, with a mean zone of inhibition of 12.47 mm, followed by E. coli, a gram-negative bacterium with a mean zone of inhibition of 12.13 mm than both S. aureus and C. albicans as gram-positive bacteria, and fungi respectively had the same inhibition average of 11.40 mm. The overall mean diameter of inhibition was statistically significantly different among the fifteen tested products. Only one brand of alcohol-based hand sanitizers was the most effective in inhibiting microbes. Less effective sanitizers may impair Covid 19 mitigation efforts and put the population at risk instead of protecting it. Indicating the need for all materials used to mitigate Covid 19 pandermic, including alcohol-based hand sanitizers, to be evaluated and monitored to ensure public health safety.

3.
RSC advances ; 11(43):26524-26533, 2021.
Article in English | EuropePMC | ID: covidwho-1813015

ABSTRACT

The outbreak of COVID-19, caused by SARS-COV-2, is responsible for higher mortality and morbidity rates across the globe. Until now, there is no specific treatment of the disease and hospitalized patients are treated according to the symptoms they develop. Efforts to identify drugs and/or vaccines are ongoing processes. Natural products have shown great promise in the treatment of many viral related diseases. In this work, using in silico methods, bioactive compounds from the neem tree were investigated for their ability to block viral cell entry as spike RBD-ACE2 inhibitors. Azadirachtin H, quentin and margocin were identified as potential compounds that demonstrated viral cell entry inhibition properties. The structural re-orientation of azadirachtin H was observed as the mechanism for viral cell entry inhibition. These compounds possessed good pharmacodynamic properties. The proposed molecules can serve as a starting point towards developing effective anti-SARS-COV-2 drugs targeting the inhibition of viral cell entry upon further in vitro and in vivo validation. The outbreak of COVID-19, caused by SARS-COV-2, is responsible for higher mortality and morbidity rates across the globe.

4.
Biochem Biophys Rep ; 27: 101024, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1525698

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), which causes coronavirus disease-19 (COVID-19) has caused more than 2 million deaths around the globe. The high transmissibility rate of the disease is related to the strong interaction between the virus spike receptor-binding domain (RBD) and the human angiotensin-converting enzyme 2 (ACE2) as documented in several reports. In this study, using state-of-the-art computational methods, natural products were screened and their molecular mechanism to disrupt spike RBD-ACE2 recognition was evaluated. There is the sensitivity of results to receptor ensemble docking calculations. Binding free energy and MD simulation are important tools to evaluate the thermodynamics of binding stability and the capacity of top hits to disrupt RBD-ACE2 recognition. The free energy profiles provide a slight decrease in binding affinity of the virus-receptor interaction. Three flavonoids parvisoflavone B (3), alpinumisoflavone (5) and norisojamicin (2) were effective in blocking the viral entry by binding strongly at the spike RBD-ACE2 interface with the inhibition constant of 0.56, 0.78 and 0.93 µM, respectively. The same compounds demonstrated similar effect on free ACE2 protein. Compound (2), also demonstrated ability to bind strongly on free spike RBD. Well-tempered metadynamics established that parvisoflavone B (3) works by binding to three sites namely interface α, ß and loop thereby inhibiting viral cell entry. Owing to their desirable pharmacokinetic properties, the presented top hit natural products are suggested for further SARS-COV-2 molecular targets and subsequent in vitro and in vivo evaluations.

6.
RSC Adv ; 11(43): 26524-26533, 2021 Aug 02.
Article in English | MEDLINE | ID: covidwho-1361651

ABSTRACT

The outbreak of COVID-19, caused by SARS-COV-2, is responsible for higher mortality and morbidity rates across the globe. Until now, there is no specific treatment of the disease and hospitalized patients are treated according to the symptoms they develop. Efforts to identify drugs and/or vaccines are ongoing processes. Natural products have shown great promise in the treatment of many viral related diseases. In this work, using in silico methods, bioactive compounds from the neem tree were investigated for their ability to block viral cell entry as spike RBD-ACE2 inhibitors. Azadirachtin H, quentin and margocin were identified as potential compounds that demonstrated viral cell entry inhibition properties. The structural re-orientation of azadirachtin H was observed as the mechanism for viral cell entry inhibition. These compounds possessed good pharmacodynamic properties. The proposed molecules can serve as a starting point towards developing effective anti-SARS-COV-2 drugs targeting the inhibition of viral cell entry upon further in vitro and in vivo validation.

SELECTION OF CITATIONS
SEARCH DETAIL